Skip to main content

Dust clogged up a baghouse

 

We were called in by a customer on one cold morning. Their dust collection system did not work when they turned on power as usual.

First, we checked the ductwork to see if there was any dust accumulated inside from the sucking points, to the fan, then to the baghouse. It seemed the ductwork was not the problem.

After being in the baghouse, the filtered air went back to the workshop.

Then we opened the access door of the baghouse hopper, and what we saw showed us the problem: it was packed with wood dust (Figure 1). 

Figure 1 baghouse hopper packed with wood dust


 Later, the access door on the clean side of the baghouse was opened, and one bag was taken out, it was very clear that the dust even accumulated between bags (Figure 2).

Figure 2 dust clogged up between bags


After the dust was removed from the baghouse, the system was turned on. In the first 20 minutes, the baghouse was warmed up without dust loading. 

When this happened, the daytime temperature outdoors went below the freezing point very often, and also after sunset and at night. We think the condensed water inside the baghouse froze and dust bridged above the airlock; as a result, more and more dust accumulated in the baghouse and paralyzed it. Consequently, the air flow was blocked off.

Leak Test, Air Balancing, Trouble-shooting, and System Evaluation services by Airvate

  • Dye test for bag/cartridge leak 
  • Dust collection system and industrial ventilation system Testing and Air Balancing
  • Technical services: field survey and dust collection system evaluation and trouble-shooting
  • New system start-up
  • Dust sample analysis
  • Dust collector selection and sizing: baghouse, wet scrubber, cyclone, settling chamber, drop-out box, etc.


Keywords:

Baghouse, hopper packed with dust, baghouse clogged up, wood dust, dust collection system not work,


Comments

Popular posts from this blog

What you have to know when applying blast gate damper

  Introduction A damper is a device that adjusts the volume of airflow passing through the outlet, inlet or duct. By proper adjustment of all dampers in a system, a desired distribution of airflows in all the branches can be obtained, while minimizing the total airflow of the system to save energy— this is also termed air balancing. The most common dampers used in industrial ventilation and dust collection systems to balance airflows are slide gate dampers (The slide gate, also called “blast gate or cut-off” damper). In a slide gate damper (see Figure 1 of a straight flat slide gate damper), the slide is inserted perpendicular to the flow. Figure 1 A sample of straight flat slide gate damper As the gate is sliding into the duct, it will add resistance to the airflow and consequently reduce the volume of airflow, while increasing airflows in all other branches. Withdrawing the gate has the reverse effect on that branch and all the others in a system. Interaction between a fan ...

Push-pull ventilation system for open surface tank saves air flow

  Three sections in this blog: Push-pull ventilation system and its advantages Disadvantages of general ventilation and side exhaust systems Methods to design a push-pull ventilation system Push-pull ventilation system and its advantages Open surface tanks used in industrial processes often need ventilating to remove harmful pollutants (vapors, fumes or aerosols) from the working environment. One method of removing pollutants is the so-called side push-pull ventilation system, in which a jet of air is blown (or pushed) from one side of the tank and collected (or pulled) by an exhaust hood on the opposite parallel side. This system is particularly useful for large tanks where access requirements preclude the use of an overhead canopy, and the size of the tank makes side (or rim) exhaust systems prohibitively expensive. Most agree that a push-pull ventilation system can yield air savings of up to 50% compared to a side suction only hood. An illustration of a push-pull system for an o...

Baghouse Dye Test for leak detection

  We did a Dye test for a customer in a newly installed baghouse. In this standard dye test procedure, green fluorescent dye powder was applied. No leaks were found in the clean plenum of the baghouse. All the bags were properly installed and no breach between the clean air and dirty air plenums was found either. View of Clean Plenum after Dye applied Per the request of our customer, we also got inside the dirty side of the baghouse through the inspection door on the hopper and visually checked dye powder distribution on the bags. From the picture below, it is apparent that the dye powder evenly distributed on all the bags, which means that the airflow was evenly distributed too. Customer was very happy about this visual check. Bottom View of Bags after Dye Applied